EVIDENCE, HIGH PROBABILITY,
AND BELIEF

propose to argue that potential and veridical evidence require probability

greater than 4. “Probability” here will be construed as objective epistemic
probability. The requirement that the probability exceed 1 (which will be taken
to be a necessary but not a sufficient condition for evidence) allows us to avoid
various counterexamples introduced in chapter 4 against the positive relevance
(increase-in-probability) account. More to the point, I will argue that a proba-
bility greater than % is required by the fundamental idea underlying both poten-
tial and veridical evidence, viz. that of providing a good reason for belief (as well
as by the fundamental idea underlying ES-evidence, viz. providing a justification
for belief). In the course of defending this claim, I will examine several theories
of evidence and belief, including two that deny any relationship between evi-
dence and belief (or high probability), one that denies the usefulness of the con-
cept of belief, insisting on replacing it with degrees of belief, and one that defines
belief as high subjective probability.

1. The Counterexamples and High Probability

On the positive relevance account, e’s increasing h’s probability is sufficient to
make e evidence that h. In the first lottery counterexample of chapter 4 the pos-
itive relevance definition counts the fact that (e) all the tickets except for those of
John and Bill were destroyed as evidence that (h) Bill won, despite the fact that
Bill had only 1 of the remaining tickets and John had 100. If we insist that a hy-
pothesis must have probability greater than 4 on the putative evidence then this
counterexample is avoided. In the present case the probability assigned to hon e
is 1.

In the swimming counterexample the positive relevance definition counts
the fact that (e) Steve was doing training laps in the water on Wednesday as ev-
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idence that (h) he drowned, despite the fact that he is a member of the Olympic
swimming team who was in fine shape Wednesday morning. If the hypothesis h
must have probability greater than + on the putative evidence e, then, in this ex-
ample, as in the previous one, e will not be evidence that h, and the counterex-
ample is avoided.

According to the positive relevance account, not only is e’s increasing h’s
probability sufficient for evidence, it is also necessary. The second lottery and in-
tervening cause counterexamples present cases in which, intuitively, e is evi-
dence that h but e does not increase h’s probability. In the second lottery case,
given the background b (that the lottery is a fair one in which one ticket drawn
at random will win) and given the information e, (that The New York Times re-
ports that Bill Clinton owns all but one of the 1000 lottery tickets sold), the in-
formation e, (that The Washington Post reports the same thing) is evidence that h
(Bill Clinton will win)—or so I claimed. The positive relevance account disallows
this claim, since e, does not increase h's probability over what it is on e, and b
alone. In the intervening cause counterexample involving the medicine’s reliev-
ing the symptoms exactly the same thing occurs: something that intuitively
looks like evidence that a hypothesis is true is precluded from that category since
it fails to increase the probability of the hypothesis. However, these two coun-
terexamples may be avoided if we relinquish the idea that evidence must in-
crease a hypothesis’ probability in favor of the idea that the hypothesis must
have high probability.

2. A Good Reason for Belief Requires Probability
Greater Than One-Half

My argument for this claim makes two assumptions:

1. For any hypothesis h and putative evidence e there is some number k
greater than or equal to zero such that if e is a good reason to believe h,
then p(h/e) > k.

The concept of “a good reason for belief” employed here is one involved in po-
tential evidence (where e can be a good reason to believe h even though h is
false). The concept is objective, in the sense that whether e is a good reason to be-
lieve h does not depend on whether anyone in fact knows or believes e, h, or that
e is a good reason to believe h. Therefore, the idea of probability in this assump-
tion is objective. Since it is, and since assumption 1 is concerned with a good
reason for belief, the concept of probability employed in assumption 1 (and
throughout this chapter, except where otherwise indicated) will be the objective
epistemic one of chapter 5, viz. degree of reasonableness of belief.

The assumption above is weak in two respects. First, it does not require (or
disallow) that k be the same for all hypotheses. Second, the assumption places no
restriction on k. (As far as this assumption is concerned, k could be zero.) The
strength of the assumption is to tie “good reason to believe” to probability. For e
to be a good reason to believe h, it is required that there be some probability of h
on ¢, and that this probability be greater than 0, the lowest probability possible.
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(The present assumption, although weak, is not without its critics. I will con-
sider one of the most challenging in sections 12 and 13.)

2. Torany eand h, if eis a good reason to believe h, then e cannot be a good
reason to believe the negation of h (—h).

This is the central assumption of the argument for the claim that ¢ is a good rea-
son to believe h only if p(h/e) > 3.1 will return to assumption 2 after presenting
the argument.

Suppose that e is a good reason to believe h, so that, in accordance Wlth as-
sumption 1, p(h/e) > k, for some k greater than or equal to 0. Suppose k< 4. Then
it could be the case that p(—h/e) > k. If so, —h and e would satisfy a necessary
condition for ¢'s being a good reason to believe —h. So unless other necessary
conditions for “good reason to believe” are imposed that preclude the possibilities
imagined, for some e and hif k < 1 it could be the case that e is a good reason to
believe h and also a good reason to believe —h. This violates assumption 2.

Now consider the “other necessary conditions” that might be imposed on

“good reason to believe” to form a set of sufficient, as well as necessary, condi-
tions. If this set requires that k be greater than or equal to <, then a good reason
to believe requires a probability greater than <. By contrast, suppose this set of
conditions allows something to be a good reason to believe even when k is less
than <. Then for some e and h, where p(h/e) > kand p(—h/e) > k, it could be that
¢ is a good reason to believe h and to believe —h, in violation of assumption 2.1f
kis greater than or equal to 3, then such a possibility is precluded. If kisless than
1, it is not precluded.

Providing a good reason to believe is a concept underlying both potential and
veridical evidence. Accordingly, by the argument of this section, each of the lat-
ter requires probability greater than 4. What I have said can be applied mutatis
mutandis to the concept of providing a ]ustlﬁcatlon for belief, which underlies ES-
evidence.

In the sections that follow I will be considering objections to this argument,
and, more generally, to the claim that e is a good reason to believe h only if p(h/e)
> 1. Before doing so, however, one must be very clear that the claim I am de-
fendlng provides only a necessary and not a sufficient condition for being a good
reason for belief. It is not part of the claim that any probability greater than %+

suffices for such a reason. We may want to require that the probability be SIgmf-
icantly greater than 4. And we may want to say that whatever the probability of
hon eis, this by itself is not sufficient for ¢’s being a good reason to believe h. Both
issues will be addressed in chapter 7.

3. First Objection

One might be tempted to reject the previous argument, and, in particular, as-
sumption 2 on which it is based, by invoking the following example. Suppose
medicine M relieves symptoms S in half the cases and in the other half makes
them worse. Then, it might be said, the fact that (e) Sam is taking M to relieve
symptoms S is a good reason to believe (h) that his symptoms will be relieved,
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since M relieves S in half the cases. And it is a good reason to believe (—h) that his
symptoms won't be relieved (but made worse), since that is what happens in half
the cases. If so, eis a good reason to believe h and a good reason to believe —h, in
violation of assumption 2.

My response is to admit that in such a case e is just as good a reason for be-
lieving h as for believing —h. But the fact that two things are equally good does
not by itself make either of them good. (Two equally good essays can both be
quite bad.) Suppose that Sam does not take medicine M to relieve his symptoms
S. And suppose that 90% of those with S who do not take M (or any other med-
icine) get worse, while 10% get better. Then, taking M is clearly the better course
of action than not taking M. Taking M has a better chance of relieving S (50%)
than does not taking M (10%). But this is not enough to make the fact that Sam
is taking M a good reason for believing that his symptoms will be relieved.

The claim that some e is a good reason for believing h is usually an empirical
claim. It can be defended or criticized on empirical grounds. For example, the
claim that

R: The fact that Sam is taking medicine M to relieve symptoms S is a good
reason to believe that Sam’s symptoms S will be relieved

might be defended by appeal to the following empirical association (here I
change the percentages from the ones originally given):

Al: Symptoms S are relieved by M in 90% of the cases, while without M
there is relief of S in only 5% of the cases.

Similarly, the claim R can be criticized and indeed falsified by showing A1 to be
false and the following to be true:

A2: Symptoms S are relieved by M in 1% of the cases, while without M
there is relief in 5% of the cases.

More generally, the weaker the association between taking M and relief of S the
less one can expect relief of S from M, and the less good is the reason for believ-
ing S will be relieved by M.

One way to criticize a good-reason-to-believe claim is to show that the asso-
ciation is such that it provides as good a reason to believe h as it does to believe
—h. Suppose you claim that the fact that this fair coin will be tossed once is a
good reason to believe it will land heads. I am criticizing your claim by saying

Not really, since this fact provides an equally good reason for believing it will
land tails.

I am saying that the fair coin’s being tossed is not a good reason to believe it will
land heads because it is an equally good reason to believe that it won't.

Similarly in the symptom case, suppose that A1 and A2 are both false, but the
following is true:

A3: Symptoms S are relieved by M in 50% of the cases, and made worse in
the other 50%, while without M there is relief only in 5% of the cases.

I am criticizing claim R above by saying that, in view of A3, the fact that Sam is
taking M torelieve S provides an equally good reason to believe that Sam's symp-
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toms will not be relieved, but indeed will be made worse. I am saying that be-
cause of this, the fact that Sam is taking M is not really a good reason to believe
his symptoms will be relieved. This is true despite the fact that Sam’s chances for
relief are considerably improved by taking M, just as the coin’s chances for land-
ing heads are considerably improved by tossing it. But because the facts leading
to such improvements are equally good reasons for believing that the outcomes
in question will not occur, they do not provide a good reason for believing they
will occur.
Now we need to consider some other fundamental objections.

4. Belief and Degrees of Belief

It might be held that there are no beliefs as such, only degrees of belief. This is
the view of some Bayesians, who seek to define evidence (and related concepts)
entirely by reference to probability. Since the concepts of evidence I have distin-
guished involve the idea of providing a good reason (or justification) for believ-
ing, they presuppose that there are beliefs, not simply degrees of belief. If there
are only degrees of belief, not beliefs as such, the objective concepts of evidence,
or at least my characterizations of them, seem flawed.!

On the Bayesian view, belief is like temperature. Both come in degrees. Any-
thing that has a temperature has some degree of temperature. This view has two
versions. On the stronger one, noted above, there are no beliefs at all, only de-
grees of belief. The assertion that one believes a proposition is either false or lack-
ing in truth-value. The assertion that one believes it to some particular degree
has a truth-value. On the weaker version there are beliefs but these are to be un-
derstood in terms of degrees of belief. One might take the state of affairs of X's
believing h to be identical with the state of affairs of X’s believing h to a degree
greater than some specified number k.2 Or one might take the state of affairs of
X's believing h to be identical with the state of affairs of X's believing h to the par-
ticular degree X does, provided that this is greater than k.

Despite appearances, neither the stronger nor the weaker version of the
degree-of-belief view is particularly damaging to the idea that evidence provides
a good reason (or justification) for belief. Bayesians understand degrees of belief
as probabilities. So, the view that evidence provides a good reason to believe can
be understood as saying that evidence furnishes a high probability. The rela-
tionship between evidence and belief can be expressed in a way that will satisfy
even the more militant Bayesians who deny the existence of beliefs in favor of
degrees of belief.

1. These claims about belief refer not to the content of belief (the proposition believed) but to
the state or act of believing. It is the latter, rather than the former, that is being claimed to be
subject to degrees.

2. This version seems to be one offered by Daniel Hunter, “On the Relation between Categori-
cal and Probabilistic Belief,” Nous, 30 (1996), 75-98. On Hunter's view, “to believe a propo-
sition is simply to assign that proposition a high subjective probability, where what counts
as sufficiently high probability is vague” (p. 87).
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One argument brought against both versions of the Bayesian view is empiri-
cal. It is that if degrees of belief exist, but not beliefs, or if beliefs are simply suf-
ficiently high degrees of belief, we would be, and need to be, overwhelmed with
information that we could not process. But in fact we are not overwhelmed. One
defender of this argument is Richard Foley, who writes:

If all of the information provided to us by others were finely qualified with re-
spect to the provider’s degree of confidence in it, we would soon be over-
whelmed. It is no different with our private deliberations. We normally don’t
have finely qualified degrees of confidence in a wide variety of propositions. . .
but even if we did, we would soon find ourselves overwhelmed if we tried to de-
liberate about complicated issues on the basis of them.?

I will not pursue this here. In this book I will assume that there are states of
believing and that these are not identical with having degrees of belief. If they
are not, how are they related? Believing is something we do. In this respect it is
like speaking, hitting, or running (even though obviously in other respects it is
different). These doings admit of degrees, indeed along one or more dimensions.
One can speak with different degrees of speed and loudness. One can hit with dif-
ferent degrees of frequency and intensity. And one can believe with different de-
grees of firmness or strength. The fundamental idea is the doing, the dimensions
represent ways it can be done, and the degrees represent how much is done
along a given dimension. So the fundamental idea is speaking, which can be
qualified along the dimension of loudness, which admits of varying degrees.
With whatever degree of loudness one is speaking, one is still speaking. Simi-
larly, believing is the fundamental idea; it can be qualified along the dimension
of firmness or strength, which admits of degrees. With whatever degree of
strength or firmness one believes, one is still believing.*

It might be objected that analogous claims can be made for temperature,
which comes in degrees. Although “having a temperature” is not to “do” any-
thing, one might say that it is the fundamental idea. Whatever degree of temper-
ature something has, it has a temperature. Nevertheless, having a temperature is
always having a temperature of some degree. Indeed, a standard dictionary offers
this definition of temperature:

The degree of hotness or coldness of anything, usually as measured on a ther-
mometer.>

In the kinetic theory of gases temperature is understood as a quantity propor-
tional to the mean translational kinetic energy of the molecules. Even if this is
not taken as a definition, nevertheless temperature is by definition a quantity
that admits of degrees (where this quantity is proportional to the mean molecu-
lar kinetic energy). Now, just as having a temperature is by definition the same

3. Richard Foley, “The Epistemology of Belief and the Epistemology of Degrees of Belief,”
American Philosophical Quarterly, 29 (1992), 111-124; quote on p. 122. See Gilbert Har-
man, Change in View (Cambridge, MA: MIT Press, 1986), ch. 3.

4. See Isaac Levi, Gambling with Truth, p.122.

5. Webster’s New World Dictionary.

Fvidence. Hioh Probahbilitv and Relief 11Q



as having a temperature of some degree, so, it may be said, believing is by defi-
nition believing to some degree.

My response is to say that the analogy has not been drawn correctly. To be
sure, since temperature is by definition a quantity admitting of degrees, having
a temperature is by definition having a temperature of some degree. The anal-
ogy with belief should be this. By definition believing is believing something (a
proposition, a person). Believing, by definition, requires an object of belief. Nec-
essarily one cannot simply believe, just as necessarily an object cannot have a
temperature without having some specific degree of temperature.

Proponents of the original analogy may now argue that believing is not by
definition believing to some degree, but just that this is always so, even necessar-
ily so. Even if it is not true by definition that one cannot believe without believ-
ing to some degree, it is nevertheless true (just as one cannot speak without
speaking with some degree of loudness). So, suppose that someone who believes
h does so to the degree r: Then, it might be claimed, the state of affairs of his be-
lieving h is identical to the state of affairs of his believing h to the degree r (just
as the state of affairs of a gas’s having a certain temperature is identical to the
state of affairs of its having the corresponding mean molecular kinetic energy).
This identity thesis suffices for a degree-of-belief view (so long perhaps as the de-
gree of belief exceeds some threshold k).

This version of the degree-of-belief view I would reject by invoking the causal
principle that if states of affairs are identical, they have the same causes and
effects. Even if it is true that if you believe h you must do so to some degree or
other, your believing h and your believing h to the degree you do (where this ex-
ceeds k) can have different causes and effects. Therefore, they are not identical.
For example, suppose that you believe very strongly (say to the degree .99) that
0.]. Simpson is guilty of murder, and that your believing it to this degree causes
me to be annoyed. What causes me to be annoyed, however, is not your believ-
ing it (something that I too believe), but your believing it to the degree you do
(how can you be so damn sure?). But if your believing that O.]. Simpson is guilty
is the same state as your believing this to the degree you do, then, by the causal
principle, they must have the same effects. Since they do not, these states are not
identical.

Accordingly, a degree-of-belief theorist must either reject beliefs altogether in
favor of degrees of belief or hold that the state of affairs of believing some h is
identical with the state of affairs of believing h to a degree greater than some
specified k. As I said earlier, however, neither of these views requires abandon-
ing the idea that evidence provides a good reason for belief. The latter will simply
be understood as a high probability.

5. Must Evidence Supply a Good Reason for Belief?
Suppose it is granted that a good reason for belief requires high objective epis-
temic probability (greater than 3) on that reason. Let us confine our attention to

potential and veridical evidence, both of which provide reasons for belief (rather
than to ES-evidence and subjective evidence which do not). Why must (potential

10N Thoas Rank Af Bavdonrs

and veridical) evidence provide a good reason for belief? Won't it suffice for such
evidence to provide just some reason to believe a hypothesis, but not necessarily
a good one, or perhaps a better reason for belief than without it, but one that is
not necessarily a good reason?

Suppose, according to the background information b, there is a coin that is
precariously balanced on its edge. The new information e is that this coin isbeing
subjected to a force. Let h be the hypothesis that this coin will soon be lying heads
up. The fact that the precariously balanced coin is being subjected to a force is, I
think, some reason to believe it will soon be lying heads up, and also some reason
to believe it will soon be lying tails up and hence not heads up. It is not, however,
a good reason for believing either, since (as I argued in sections 2 and 3) if some-
thing is a good reason to believe h it cannot also be a good reason to believe —h.
One way of criticizing the claim that e is a good reason to believe his to show that
it is an equally good reason to believe —h.

However, suppose we were to drop the “good reason to believe” requirement.
Can we do so in favor of a “some reason to believe” requirement? Can we say that
since the fact that this precariously balanced coin is being subjected to a force is
some reason to believe it will soon be lying heads up and some reason to believe
it will soon be lying tails up, this fact is potential evidence that each claim is
true?® I reject this idea because of what I will call the “canceling” effect to which
evidence is subject.

Potential (as well as veridical) evidence claims of the form “e is evidence that
h” are usually empirically incomplete. They can be falsified or at least have doubt
cast upon them by additional empirical information. So if you claim that the
fact that this precariously balanced coin is being subjected to a force is evidence
that it will land heads, I can cast doubt on your claim by pointing out the empir-
ical fact that this coin has two sides, one of which is not heads, and that the force
is being applied so as to make the coin spin randomly, so that there is no more rea-
son to expect it to land heads rather than tails. If this is so, then your evidence
claim has been seriously weakened. Has it been canceled altogether? Has it been
falsified?

I think it has. In this respect potential evidence is like net force in physics. A
book sitting on the table is being subjected to two forces. There is the force of
gravity directed toward the center of the earth; and there is the force exerted by
the table on the book in the opposite direction. The net force in this case is zero,
since the two independent forces are equal and opposite. The net force is deter-
mined by the balance of all the forces. Whether some particular force acting on
a body is the net force depends upon whether there are other forces acting on it.
The claim that this force is the net force is defeated by the existence of other
forces. In this respect evidence is like net force. Some fact might pull in one di-
rection, while another might pull equally in the opposite direction and prevent
the first from being (potential or veridical) evidence. Or (unlike the case of force)
some fact might pull equally in opposite directions, with a net pull in neither.
(This is so with our precariously balanced coin.)

6. Obviously it cannot be veridical evidence, since this requires the hypothesis to be true; and
both hypotheses cannot be true.
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It might be objected that in many situations (including scientific ones) the ev-
idence pulls equally in opposite directions, and it is still evidence. For example,
suppose that the effectiveness of a new drug is being tested with regard to its ca-
pacity to reduce certain symptoms. Two trials are run. In the first there are 2000
patients with the symptoms, 1000 of which are given the drug and 1000 a
placebo. Of those taking the drug, 950 have their symptoms relieved, while none
in the control group does. Call this information e,. The second trial isrun just like
the first, except that the result is quite different (call it e,): of the 1000 patients
taking the drug only 50 have their symptoms relieved, while none in the control
group does. Consider the hypothesis h that the drug is more than 50% effective.
The results of the two trials pull equally in opposite directions with respect to h.
Yet we might say that the combined result e, &e, constitutes some evidence that
h and some evidence that —h.

My response is that what is being claimed is that part of the combined result,
viz. e,, is evidence that h, and a different part, viz. e,, is evidence that —h. The
concept of evidence here is ES-evidence. Where the epistemic situation does not
contain knowledge of the result e,, e, can be ES-evidence that h (analogously for
e, with respect to —h). Someone in an epistemic situation in which result e, is
unknown might be justified in believing h on the basis of e,, just as someone in
an epistemic situation in which result e, is unknown might be justified in believ-
ing —h. But where we are not separating and relativizing evidence in this way,
the combined results pulling in opposite directions cancel. The combined results
are not evidence that h is true, and they are not evidence that —h is true. They
are puzzling and inconclusive.

A somewhat similar analysis applies to the case of the precariously balanced
coin. Where h is that the coin will soon be lying heads up, and e is that a force is
being applied to the coin, e can be evidence that h and also evidence that —h, if
we mean ES-evidence and if we have in mind different ES’s for each claim. One
ES includes knowledge of the fact that one side of the coin shows heads, but in-
cludes no knowledge about the other side. The other ES includes the analogous
situation involving tails. Someone who knew that at least one side of the coin is
marked heads, and who was not in a position to know that the two sides of the
coin are different, might be justified in believing that the coin will soon be lying
heads up; similarly, for someone else with this knowledge concerning tails. But
where ES includes the fact that the two sides of the coin are marked differently,
then, with respect to such an ES, one would not be justified in believing the coin
will soon be lying heads up. And the fact that a force will be exerted on the pre-
cariously balanced coin is not ES-evidence that the coin will soon be heads up,
nor is it ES-evidence that the coin will soon be tails up. It is evidence that the coin
will soon be either heads up or tails up.

6. How Scientists Deal with Conflicting Studies
Multiple studies with conflicting results frequently occur in the sciences. Be-

moaning this fact, here is how one pair of authors describe the situation in so-
cial science research:
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The sequence of events that led to this state of affairs has been much the same
in one research area after another. First, there is initial optimism about using
social science research to answer socially important questions that arise. . . .
Next, several studies on the question are conducted, but the results are con-
flicting. There is some disappointment that the question has not been an-
swered, but policy makers—and people in general—are still optimistic. They,
along with the researchers, conclude that more research is needed to identify
the interactions (moderators) that have caused the conflicting findings. . . .

In the third phase, a large number of research studies are funded and con-
ducted to test these moderator hypotheses. When they are completed, there is
now a large body of studies, but instead of being resolved, the number of con-
flicts increases. The moderator hypotheses from the initial studies are not borne
out. No one can make much sense out of the conflicting findings. Researchers
conclude that the phenomenon that was selected for study in this particular
case has turned out to be hopelessly complex, and turn to the investigation of
another question, hoping that this time the question will turn out to be more
tractable.”

What these authors advocate, and what their book expounds, is meta-analy-
sis, a method or set of methods for combining the results of disparate and even
conflicting studies to determine whether new statistical information can be
gleaned from these studies that will support or disconfirm a hypothesis of inter-
est. Even before the term “meta-analysis” was introduced in 1976 by Gene V
Glass, other investigators had decried conflicting results of studies in various
areas. In 1971 Light and Smith, who introduced a precursor to meta-analysis
which they called the “cluster approach,” quoted the following passage from a
1966 U.S. Department of Health, Education, and Welfare survey regarding the
benefits of ability-grouping in schools:

Many studies throughout the years have compared academic progress of chil-
dren grouped according to ability with progress made when grouped hetero-
geneously. Conclusive and definite anwers to questions commonly asked are
difficult to get. Some studies show gains favoring ability grouping, some favor-
ing heterogeneous grouping. Others show little or no significant difference be-
tween procedures used. The evidence against or in favor of ability grouping re-
mains vague in spite of a rather persistent belief that learning problems would
be greatly alleviated if children on similar levels of ability or achievement could
be grouped together for instructional purposes.®

In a recent book on meta-analysis for the more general reader, Morton Hunt
documents the problem of conflicting studies in many different fields of science.®
These include several examples of medical studies yielding conflicting conclu-
sions. For instance,

7. John E. Hunter and Frank L. Schmidt, Methods of Meta-Analysis (Newbury Park, CA: Sage
Publications, 1990), p. 36.

8. Quoted in Richard J. Light and Paul V. Smith, “Accumulating Evidence: Procedures for Re-
solving Contradictions among Different Research Studies,” Harvard Educational Review, 41
(1971),429-471. Quote on p. 438.

9. Morton Hunt, How Science Takes Stock (New York: Russell Sage Foundation, 1997); see
pp. 2—4.
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Twenty-one studies of the use of fluorouracil against advanced colon cancer
all find it beneficial, but findings of its effectiveness vary so widely—from
a high of 85% to a low of 8%—as to be meaningless and useless to clini-
cians. (p. 2)

When there are studies with conflicting results what do researchers in the
field generally do besides try to conduct new studies or give up and tackle a new
problem? Several strategies are noted by the authors cited above:

1. Write a review article that summarizes the different studies and results,
without attempting to resolve the issue.

2. Choose a single, favorite study from the set and agree with its conclusions.

3. Compute overall averages for relevant statistics across the entire set of
studies, independently of the sizes of the sample in each study or the con-
ditions under which the samples were taken.

4. Take a vote. If a majority of the studies favor one conclusion, then that is
the conclusion supported by the studies.

5. Employ meta-analysis, which its proponents regard as a much more so-
phisticated and reliable set of methods than 3 and 4 above.

When different studies yield conflicting results strategies 2—5 may generate
the claim that, despite these conflicting results, the evidence, considered as a
whole, does support (or disconfirm) a certain hypothesis. But it need not gener-
ate such a claim at all. Various conflicting studies may seem equally good, so no
favorite emerges using strategy 2. Overall averages for the studies computed
using strategy 3 may not favor a hypothesis over its negation. The studies may
be evenly divided with respect to a given conclusion, so the vote in strategy 4 re-
sults in no selection. And even a sophisticated meta-analysis of strategy 5 may
not yield a conclusion favoring one hypothesis over another. Indeed the use of
meta-analyses is controversial.'® Different meta-analyses by different analysts
have scored the same studies differently, resulting in different conclusions. And
the results of a meta-analysis of a fairly large set of small trials may conflict with
the results of a very large controlled trial.}!

Accordingly, even strategies 2—>5, which can lead to some resolution, need
not do so. If not, scientists are in the same boat as Hunter and Schmidt described
earlier: “No one can make much sense out of the conflicting findings.” They
cancel. There is (ES-)evidence that h is true (the results of some of the studies).
There is (ES-)evidence that h is false (results of other studies). But considered as
a whole, the studies are not both evidence that h is true and evidence that —h is
true. They are not evidence that either hypothesis is true, despite the fact that
they contain parts that are (ES-)evidence that each is true. That is why the
government report, quoted by Light and Smith, concerning ability-grouping in
school, claims that while “some studies show gains favoring ability grouping,

10. A summary of criticisms is contained in a review of Hunt, How Science Takes Stock, by John
C. Bailar I, Science, 227 (1997), July 25, 1997, 528—-529. See also Bailar, “The Practice
of Meta-Analysis,” Journal of Clinical Epidemiology, 48 (1995), 149-157.

11. See, for example, Jacques LeLorier et al., “Discrepancies between Meta-Analyses and Sub-
sequent Large Randomized, Controlled Trials,” The New England Journal of Medicine, Au-
gust 21,1997, 536—-542.
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some favoring heterogeneous grouping . . . the evidence against or in favor of
ability grouping remains vague.” That is also why Hunter and Schmidt say that
in such cases of conflict “researchers conclude that the phenomenon that was
selected for study . . . has turned out to be hopelessly complex, and turn to the in-
vestigation of another question, hoping that this time the question will turn out
to be more tractable.”

From the discussion in this and the previous section, I conclude that if e is po-
tential or veridical evidence that h, then e provides a good reason to believe h, not
simply some reason. And, I have argued in section 2, e provides a good reason to
believe h only if h's (objective epistemic) probability on e is greater than —h's
probability on e, that is, only if h’s probability on e is greater than 1. Soif eis po-
tential or veridical evidence that h, then h’s probability on ¢ is greater than 1. In
the sections that follow I propose to consider two new objections to these con-

clusions. The first divorces evidence from belief: the second divorces belief from
probability.

7. The Likelihood View of Evidence

On this view, evidence is unrelated to belief, or at least, it is not related in any of
the ways I have outlined. The idea has been defended by Tan Hacking,'> A. W. F,
Edwards,'* and most recently, Richard Royall, a biostatistician. 4 I will consider
the latter in what follows.

Royall defines evidence by formulating what he calls the

Law of likelihood: If hypothesis A implies that the probability that a random
variable X takes the value x is p ,(x), while hypothesis B implies that the
probability is p,(x), then the observation X = x is evidence supporting A
over Bif and only if p,(x) > py(x), and the likelihood ratio p ,(x)/p(x) meas-
ures the strength of that evidence.!>

An example will be helpful, and I will introduce one used by Royall himself.
There is a diagnostic test for a disease D which is such that when D is present the
test detects it 95% of the time and gives an erroneous reading 5% of the time.
When D is absent the test correctly yields a negative result 98% of the time and

incorrectly yields a false positive 2% of the time. The probabilities, then, are rep-
resented as follows:

p(+/D) = .95 (the probability that the test will yield a positive result
given the presence of Dis .95)
p(—/D) = .05
p(—/not-D) = .98
p(+/not-D) = .02

12. Ian Hacking, Logic of Statistical Inference (Cambridge: Cambridge University Press, 1965).

13. A.W.F. Edwards, Likelihood (Baltimore: Johns Hopkins Press, 1992).

14. Richard Royall, Statistical Evidence (London: Chapman and Hall, 199 7).

15. Royall, p. 3. Although he does not provide an interpretation for probability, Royall is talk-
ing about some concept of objective probability.
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Now we consider two hypotheses regarding a certain patient.

A: The patient has D
B: The patient does not have D

On Royall’s view, hypothesis A implies that the probability of a positive test result
for this patient is .95. We can write this as p(+/A) = .95, or p,(+) = .95. Simi-
larly, we can write p(+/B) = .02, or p,(+) = .02, for the probability of a positive
test result on hypothesis B. p(+/A) is called the Iikelihood of hypothesis A on
the test result +. The random variable X in this case is the test result, which can
take two possible values: positive (+) and negative (—). Let us suppose that our
patient is given the test, and that it yields a positive result (+). This result is what
Royall denotes by the lower case variable x. So, in this example, “the observation
X = x" is understood to mean that the test yields a positive result. I shall refer to
this outcome simply as e.

The question of interest to Royall is whether e is evidence supporting hy-
pothesis A (that the patient has disease D) over hypothesis B (that the patient
does not have D). On his view, it is if and only if

(1) p(e/A) > p(e/B),

that is, if and only if the likelihood of A on e is greater than that of B on e.1®In
the present case,

p(e/A) = p(+/D) = .95
p(e/B) = p(+/not-D) = .02.

So (1) is satisfied, and e is evidence supporting A over B. The strength of the evi-
dence is given by the ratio p(e/A)/p(e/B) = .95/.02 = 47.5.

Royall makes a number of claims about this view, which help to clarify it and
highlight its advantages.

1. One advantage he claims is that it is a plausible extension of reasoning in
deterministic cases to probabilistic ones. He writes:

One favorable point is that it seems to be the natural extension, to probabilis-
tic phenomena, of scientists’ established forms of reasoning in deterministic
situations. If A implies that under specified conditions x will be observed, while
B implies that under the same conditions something else, not x, will be ob-
served, and if those conditions are created and x is seen, then this observation
is evidence supporting A versus B. This is the law of likelihood in the extreme
case of p,(x) = 1 and p,(x) = 0. The law simply extends this way of reasoning
to say that if x is more probable under hypothesis A than under B, then the oc-
currence of x is evidence supporting A over B, and the strength of that evi-
dence is determined by how much greater the probability is under A. This
seems both objective and fair—the hypothesis that assigned the greater prob-
ability to the observation did the better job of predicting what actually hap-
pened, so it is better supported by that observation. (p. 5)

16. As mentioned in footnote 15, Royall is speaking of some type of objective probability, al-
though he does not specify any particular one. In what follows, in order to contrast his
view of evidence with the one I am developing for potential evidence, I will construe his
probabilities as objective epistemic ones. However, the criticisms I develop will be applicable
no matter what objective interpretation is given for his probabilities.
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2. A second advantage claimed by Royall is that, unlike the positive relevance
definition of evidence, the likelihood definition does not require the determina-
tion of a prior probability for a hypothesis h, which Royall regards as “generally
unknown and/or personal.” Obviously, then, Royall is regarding the likelihood
probability p(e/h), and therefore evidence itself, as objective rather than subjec-
tive. Immediately following his rejection of prior probabilities as generally un-
known and/or personal, he writes:

Although you and I agree (on the basis of the law of likelihood) that given ev-
idence supports A over B, and C over both A and B, we might disagree about
whether it is evidence supporting A (on the basis of the law of changing prob-
ability) purely on the basis of our different judgements of the a priori [prior]
probabilities of A, B, and C. (p. 11)

3. Royall emphasizes that the definition is comparative. It is intended to ex-
plicate the idea that some set of observations is evidence for one hypothesis over
another. It

represents a concept of evidence that is essentially relative, one that does not
apply to a single hypothesis, taken alone. Thus it explains how observations
should be interpreted as evidence for A vis-a-vis B, but it makes no mention of
how those observations should be interpreted as evidence in relation to A
alone. (p. 8)

So from the fact that e is evidence for h, over h,, or that e supports h, more than
h,, we cannot conclude that e is evidence for h,, or that e supports h, .

4. Finally, let me mention a claim made by Edwards, another defender of the
likelihood account. He writes:

It is sometimes objected that the [likelihood] measure of support does not have
any “meaning,” by which is usually meant any “probability interpretation.” It
is indeed true that a statement of support, though derived from probabilities,
does not make any assertion about the probability of a hypothesis being correct.
And for good reason: the [likelihood] method of support has been developed by
people who explicitly deny that any such statement is generally meaningful in
the context of a statistical hypothesis. . . .

There is, however, a perfectly simple “operational interpretation” of a like-
lihood ratio for two hypotheses on some data. It is, of course, the ratio of the
frequencies with which, in the long run, the two hypotheses will deliver the
observed data.!”

What Edwards seems to have in mind by the last statement can be illustrated
by means of the following example. We have two weighted coins. One is weighted
so that in the long run 60% of the tosses yield heads. The other is weighted so as
to yield 40% heads. We cannot tell which coin is which simply by looking, only
by tossing. We choose one of the two coins at random and consider these hy-
potheses:

h,: This coin has the 40% weight.
h,:  This coin has the 60% weight.

17. Edwards, Likelihood, p. 33.
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Now we toss the coin 10 times, resulting in the following outcome:
e: The coin landed heads 3 times.
The likelihoods are these:

p(e/h;) =.2150
ple/h,) = .0425

The likelihood ratio p(e/h,)/p(e/h,) = .2150/.0425, which is approximately 5.
So on the likelihood account, e supports h, over h,, and the strength of the evi-
dence, as measured by the likelihood ratio, is approximately 5.

Now what Edwards is claiming is that the “operational interpretation” of this
likelihood ratio can be given as a long-run relative frequency: if we continue to
toss this coin indefinitely, then on the hypothesis h, (that the coin is the 40%
coin) the relative frequency of sequences of 10 tosses in which 3 yield heads is 5
times greater than it would be on the hypothesis h, (that the coin is the 60%
coin). More generally, if the likelihood ratio p(e/h,)/p(e/h,) = r > 1, then if we
continue to run the test as we have been doing, we will obtain results like e, the
results we have actually obtained, r times more if hypothesis h, is true thanif h,
is true.

8. Likelihood and Belief

Is there a likelihood concept of evidence? Do scientists and others actually em-
ploy such a concept? If not, should they?

To begin with, Royall explicitly acknowledges that the concept of evidence he
introduces is to be distinguished from any concept that concerns whether, or to
what degree, one should believe the hypothesis on the basis of the evidence. Sup-
pose one has made an observation. Royall distinguishes what he regards as three
separate questions:

1. What do I believe, now that I have this observation?!8

2. What should I do, now that I have this observation?

3. What does this observation tell me about A versus B? (How should I inter-
pret this observation as evidence regarding A versus B?) (p. 4)

An answer to the third question, he makes clear, does not provide an answer to
the first two.

Indeed, assuming, asI have been doing, that if e supplies a good reason to be-
lieve h then p(h/e) must be high (> 1), we can readily see why the likelihood def-
inition does not guarantee that evidence supplies a good reason for belief.}® On

18. In the context of his discussion, it seems pretty clear that Royall intends this question to be
interpreted as “What should I believe?”

19. This is perfectly consistent with construing Royall’s probabilities as objective epistemic
ones measuring degrees of reasonableness of belief. Royall’s concept of evidence, under-
stood in terms of such probabilities, requires the degree of reasonableness of believing e
given h to be greater than the degree of reasonableness of believing e given h’". It does not
require the degree of reasonableness of believing h given e to be greater than —} or than i’
given e.
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the likelihood definition, e can be evidence for hypothesis A over hypothesis B
even if p(A/e) is extremely low. Suppose, for example, that the presence of a cer-
tain gene G1 reduces the chance of getting a certain disease D from .05 to .02,
while the presence of gene G2 reduces it from .05 to .01. That is, p(D) = .05,
p(D/G1) = .02, and p(D/G2) = .01. And suppose that in the general population
gene G1 is on the average present in one out of 1000 people, while G2 is present
in one out of 100 people. That is, p(G1) = .001 and p(G2) = .01. Now, using
Bayes’ theorem, we have

p(G1) x p(D/G1) _ 001 x.02

p(G1/D) = »D) 05 =.0004
_p(G2) x p(D/G2) _01x.01 _
p(G2/D) (D) 05 =.002

Since p(D/G1) > p(D/G2), on the likelihood definition, the fact that a certain
patient has disease D is evidence for the hypothesis that the patient has gene G1
over the hypothesis that he has G2. (The likelihood ratio is 2.) Yet in this case, the
probability that a patient has gene G1 given that he has disease D, p(G1/D), is
very low (.0004). If p(G1/D) must be greater than + for the presence of disease
D to be a good reason to believe the patient has gene G1, the fact that the patient
has Din this case is not a good reason for such a belief. Yet on the likelihood view,
this fact is supporting evidence that the patient has G1 over the hypothesis that
the patient has G2. As noted, likelihood evidence for one hypothesis over an-
other need not provide a good reason to believe the better supported hypothesis.

If likelihood evidence does not necessarily provide a good reason to believe a
hypothesis, does it provide at least some reason? Since Royall distinguishes his
concept of evidence for h from a concept of whether, or to what degree, to believe
h, the answer would seem to be no. This can be confirmed by reference once
again to probability. If e is at least some reason to believe h (though not neces-
sarily a good reason), then, we might suppose, there is some threshold of proba-
bility (say, less than 4) that h’s probability on e must exceed. For example, in sec-
tion 5, in the case of the coin precariously balanced on its edge, I claimed that
the fact that it is being subjected to a force is not a good reason to believe it will
soon be lying heads up. Nevertheless, I claimed it was some reason to believe this
(and equally some reason to believe it will soon be lying tails up). The probabil-
ity we assign to each of these outcomes is 3. Without assuming that for e to pro-
vide some reason to believe h, p(h/e) must be this high, let us suppose that it must
exceed some threshold value k > 0. Whatever that value we can devise a case in
which it is not exceeded, but e is likelihood evidence for h, over h,.

For example, suppose the probability threshold value for “some reason” is
.01. That is, for e to be at least some reason to believe h, the probability of h on e
must exceed .01. Yet in our gene example, p(G1/D) = .0004, which is only 4% of
this threshold value. If .01 is the threshold value, then the fact that the patient
has disease D is not a reason to believe he has gene G1, even though, on the like-
lihood definition, the fact that the patient has D is evidence for his having G1
over his having G2. Could we say at least that if eis likelihood evidence for h, over
h,, then e is a better reason for believing h, than h,, or a reason for believing h,
more than h,? This also seems precluded. If e is a better reason for believing h,
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than h,, or a reason to believe h, more than h,, then h, should be more probable
on e than is h,. Yet in the gene example, p(G1/D) < p(G2/D). But since p(D/G1)
> p(D/G2), Dis likelihood evidence for G1 over G2.

Indeed the presence of disease D lowers the probability that a person has gene
G1 (from .001 to .0004). Yet it is likelihood evidence that a patient has gene G1
over gene G2. (The presence of D also lowers the probability that a person has
gene G2, from .01 to .002.)

Accordingly, in this example, the presence of disease D is likelihood evidence
for the hypothesis that the patient has G1 over the hypothesis that the patient
has gene G2, even though

1. p(G1/D) < p(G2/D), that is, even though the probability that the patient
has G1 is less (not more) on D than the probability that the patient has G2.

2. p(G1/D) = .0004, that s, the probability that the patient has G1, given that
he has D, is very low.

3. p(G1/D) < p(G1), that is, the probability that the patient has G1 is lowered
by his having D.

It is for these reasons that Royall wants to divorce support from belief.

If likelihood evidence does not provide a good reason, or indeed some reason,
to believe a hypothesis, or a better reason to believe one hypothesis than another,
what does it provide? What of value do we get when we get likelihood evidence?
Let us grant that we get something that does not require a determination of prior
probabilities, and that we get something for which objective probabilities can be
used. Of what value is the product? What can we do with it, if it does not provide
a basis for believing a proposition or (on Royall’s view) a basis for action? Why
should we be interested in such a concept? Why is this a concept of support or ev-
idence?

In its defense, we recall, Royall claims that the likelihood concept of evidence
is a natural extension of what he calls “deterministic” reasoning. He construes
the latter as involving two hypotheses h, and h,, where h, implies that e is the
case and h, implies that e is not the case, and e turns out to be the case. If so, he
claims, e is evidence supporting h, over h, (p. 5). Thereis, however, an important
difference between the deterministic case and the nondeterministic ones of in-
terest to Royall. In the former, if h, implies ¢, and h, implies —e, then p(e/h;) = 1
and p(e/h,) = 0. In the deterministic cases, unlike the nondeterministic ones, it
is not possible that p(h,/e) < p(h,/e), since the latter is equal to zero. Unless
p(h,/e) = 0, in the deterministic cases we are guaranteed that p(h,/e) will always
be greater than p(h,/e). Let us assume that if p(h,/e) > p(h,/e), then, given e, it is
more reasonable to believe h, than h,, or at least it is less unreasonable to believe
h, than h,. In the deterministic cases, then, that is, in cases in which p(e/h;) = 1
and p(e/h,) = 0, there will be at least some relationship between Royall’s likeli-
hood evidence and belief. But in nondeterministic cases there is no such guar-
antee, since even though p(e/h,) > p(e/h,), in such casesit is possible that p(h,/e)

< p(h,/e) (and that p(h,/e) is very small, and that p(h,/e) < p(h,)). In short, even
if the deterministic cases have some (minimal) connection with belief, no such
connection is guaranteed for the nondeterministic ones. The question remains,
then, why in the nondeterministic cases (which are, after all, the ones Royall is
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concerned with) we should be interested in his likelihood concept of evidence.
What makes it a concept of evidence?

Another claim made by Royall is that since on the likelihood definition “the
hypothesis that assigned the greater probability to the observation did the better
job of predicting what actually happened, so it is better supported by that obser-
vation” (p. 5). (Edwards makes a related claim about the continued predictive
sucesses of the hypotheses.) This reply, I believe, begs the question. What justifi-
cation is there for saying that of two hypotheses, the one that assigned the
greater probability to the event that actually occurred is the better supported by
that event? Such a justification seems necessary since we cannot conclude that
the event provides a good, or any, reason for believing the preferred hypothesis,
or that it provides a better reason for believing the preferred hypothesis than for
believing its competitor.

Ian Hacking makes a claim that might provide some justification for taking
likelihood to be a measure of support. After formulating a principle of likelihood
which is essentially the one propounded by Royall,?° Hacking writes:

This I venture as the explication of the thesis, “if p implies that something
happens which happens rarely, while g implies that something happens which
happens less rarely, then, lacking other information, g is better supported
than p.”?!

I want to focus here on Hacking’s phrase “lacking other information.” The idea
is that if the likelihood of h, on e is greater than that of h, on e, then, in the ab-
sence of any other information, e supports h, better than h,. Perhaps the thought
is that if one is in a situation where one can determine only whether the likeli-
hood of h, one, thatis, p(e/h,), is greater than that of h, on ¢, that s, p(e/h,), and
where one cannot compare prior probabilities, p(h,) and p(h,), and where one
cannot compare posterior probabilities, p(h,/e) and p(h,/e), then at least one can
judge support based on likelihoods.

If thisis the idea, then again the question is begged, since it needs to be shown
that in the absence of other information about these probabilities, judgments
about support can be made at all. By analogy, suppose we want to determine
whether one ship on the ocean is closer to the Baltimore harbor than another.
Suppose that latitudes can readily be determined, and we can say that one ship
is on a latitude closer to that of Baltimore than the other ship. But suppose that
(as was historically the case until the invention of a gyroscopic clock) longitudes
are very difficult to determine. It could be disasterous to say that, in the absence
of longitudinal information, one ship is closer to Baltimore than the other be-
cause its latitude is closer to that of Baltimore than the other. Both latitude and
longitude are needed to determine which is closer. What Hacking needs to dem-
onstrate is that there is some intuitive sense of support for which information re-
garding prior and posterior probabilities is not needed. He needs to show that in
that sense of support, in the absence of such information, the hypothesis with
the higher likelihood is the better supported.

20. Indeed, Royall cites Hacking when he formulates his principle.
21. Hacking, Logic of Statistical Inference, p. 65.
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9. Does Evidence Require Prior or Posterior
Probabilities? Mayo’s Error-Statistical Account

Deborah Mayo develops a novel probabilistic approach to evidence that force-
fully rejects the positive relevance and high probability accounts (as well as a
likelihood view of the sort just discussed).?? She rejects positive relevance and
high probability because both require a determination of the posterior probabil-
ity p(h/e), and, in addition, the former requires a determination of a prior prob-
ability p(h). In general, she believes, it is not possible or necessary to assign prob-
abilities to hypotheses, whether these are prior or posterior probabilities. T will
not discuss Mayo's rejection of these standard views, but only her own positive
view, which she calls an error-statistical approach.

On her view, to have evidence for a hypothesis, in a sense that is important to
science, is to have something that passes a good test for that hypothesis:

Following a practice common to testing approaches, I identify “having good
evidence (or just having evidence) for H” and “having a good test of H.” That
is, to ask whether e counts as good evidence for H, in the present account is to
ask whether H has passed a good test with e. (p. 179)

She divides this idea into two parts: (a) passing a test, and (b) the test’s being a
good one. The first idea she describes by saying that the test result e must “fit” the
hypothesis. Her criterion of “fit” is rather open-ended and contextual. She does
not require that the putative evidence e be entailed by the hypothesis h, or even
that e be highly probable on h. Minimally, she says, e must not be improbable on
h(p.179).

It is the second idea, that of a good test, that is the most important in her ac-
count. For this purpose she proposes a

Severity requirement: Passing a test T (with [result] e) counts as a good test of
or good evidence for H just to the extent that H fits e and T'is a severe test of

H(p. 180).

The notion of a severe test in this requirement is to be understood by reference
to what she calls a severity criterion, for which she offers two formulations:

Severity criterion 1: There is a very high probability that test procedure T
would not yield such a passing result [¢] if His false. (Alternatively, there is
a very low probability that the test procedure T would yield such a passing
result, if H is false.)

Severity criterion 2: There is a very high probability that the test procedure T
would yield a worse fit if H is false. (Alternatively, there is a very low proba-
bility that test procedure T would yield so good a fit if His false.)

22. Deborah Mayo, Error and the Growth of Experimental Knowledge (Chicago: University of
Chicago Press, 1996). [ am very much indebted to her for her patience and impatience in
explaining her very interesting but complex views to me. Her patience allowed me to
correct mistakes and improve my formulations; her impatience motivated me to do so. In
any case, induction tells me that she will not completely sanction what I say here.

Mayo's criteria for “evidence” (or a “good test”) invoke a concept of probabil-
ity. However, unlike the two standard probability accounts, which she rejects,
her account does not appeal to a posterior probability for hypothesis h, that is, to
p(h/e), or to a prior probability for h, that is, to p(h). The only probabilities she in-
vokes are these:

(a) the probability that the test T will yield the putative evidence e, given the
hypothesis h. I will write this as p(e(T)/h). This probability is not supposed to be
low, thus satisfying her minimal condition for e “fitting” h.

(b) the probability that the test T will yield the putative evidence e, given that
the hypothesis is false, that is, p(e(T)/—h). This probability is supposed to be low,
thus satisfying her severity requirement.

There is no requirement, however, that the following probabilities be deter-
mined—p(h/e(T)) or p(h)—or that the former be high or that it be higher than
the latter, in order that e(T) be evidence that (or a good test of) h. Finally, the
probabilities that Mayo invokes in (a) and (b) are objective, not subjective. Her
examples employ probabilities construed in the relative frequency sense, and it
is clear that these are the kinds of probabilities she has in mind for her concept
of evidence.

Let’s consider an example. There is a very large set of bags, all of which con-
tain many balls. Each bag in the set is one of two types. In the first type, 60% of
the balls are white and 40% are red. In the second type, 40% are white and 60%
are red. We will proceed with the following experiment. We will choose one bag
at random and select a sample of balls from it, with replacement, determining
how many are white. (We will assume that the probability of selecting a white
ball is the same each time.) We consider two hypotheses. The first, h, is that the
bag selected contains 40% white balls. The second, I, is that it contains 60%
white balls.?3

The particular test T we run involves selecting 100 balls, with replacement,
from the chosen bag. We need a test rule for deciding whether a result passes the
test T with respect to the hypotheses h and h’. Here is one:

Test Rule: In 100 selections of balls from the chosen bag, if the observed
proportion of white balls is less than .5 (that is, if less than 50 out of 100
are white), then the resulting selection passes the test T for hypothesis h as
against hypothesis h’.

Now we run test T. We select 100 balls, with replacement, and obtain the re-
sult e(T) that 40 are white. Since 40 of the 100 are white, the hypothesis h (that
the bag selected is 40% white) “fits” this result (as precisely as you like). The
question is how severe the test is. According to Mayo’s severity criterion 1, there
must be a very high probability that our test procedure would not yield this pass-

23. Mayo prefers to state hypotheses of these sorts to be making an assertion about the value
of a parameter p in a binomial distribution. So if we consider drawing balls from the cho-
sen bag, prepresents the percentage of white balls drawn in n trials. The hypotheses of con-
cern to her would then be h: p = .4, h": p = .6, in n trials (for sufficiently large n). In what
follows I simplify by letting h and h’ be the hypotheses given in the text.
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ing result e(T) if hypothesis h were not true but h’ were. The probability that our
test procedure would yield this passing result if h were false and h” were true,

p (we obtain this passing result for h (40 white out of 100)/K is true),

is .00002. So the probability that our test procedure would not yield this passing
result if h were not true but b’ were is 1 — .00002 = .99998, which is indeed a
very high probability. Accordingly, Mayo’s severity requirement is satisfied. On
her view, then, the result e(T) of the test (40 of the 100 balls selected are white)
is good evidence for the hypothesis h.

Finally, we note that determining whether this test result e(T) is evidence that
h does not involve determining p(h), the prior probability of h, or p(h/e(T)), the
posterior probability of h given the test result e(T).

10. Does Mayo’s Account Give Us What We Want?

Is the result e(T) described in the previous section really a good test of, and hence
evidence for, hypothesis h, as Mayo's account implies? I suggest that it depends
on whether certain additional conditions obtain. In the example we stipulated
that the bag in question is chosen at random from a very large set of bags. Sup-
pose that half of these bags are ones in which 40% of the balls are white and
60% are red, while the other half are ones in which 60% are white and 40% are
red. If this is so, then, where a bag is selected at random, the probability of se-
lecting a bag in which 40% of the balls are white is 1, thatis,

1) ph) =7

Now, the probability of obtaining 40 white balls in a sample of 100, e(T), on
the assumption that h is true, is

(2) p(e(T)/h) = .08.
And the probability of obtaining the result ¢(T), assuming that his false (and that
' is true) is

(3) p(e(T)/—h) = .00002.2

According to Bayes’ theorem,

_ p(W)xple(T)/h)
peD) = ey )+ p(— W) xp(eD ).

From (1), (2), and (3) above, using Bayes’ theorem, the posterior probability

~ .5x.08
p(h/e(T) = 757708) + (.5 x.00002)

24. Following Mayo, probabilities in (1)-(3) can be construed in a relative frequency sense. To
simplify notation, however, I use h both for the type of event “selecting a bag in which 40%
of the balls are white” (e.g., in (1)) and for the hypothesis “the bag selected has 40% white
balls” (e.g., in (2)). Similar interpretations of h can be given for Mayo's “parameter” idea in
note 23.

is approximately 1, and p(—h/e(T)), which is equal to p(h’/e(T)), is approximately
0. Note that in this case, since p(h/e(T)) > .5, obtaining the result e(T) comports
with my high-probability condition on evidence. So far so good.

By contrast, let us consider a very different scenario. Suppose that instead of
half of the bags being 40% white, only 1 in 100,000 are, so that the probability
of selecting a bag in which 40% of the balls are white is .00001, that is,

(4) p(h) =.00001.

Using this value in Bayes' theorem, and keeping the other values the same, we
obtain

(5) p(h/e(T)) = .004 and p(h’/e(T)) = .996.

Accordingly, the probability that the bag selected is 40% white, even assuming
that in the sample of 100 examined 40 are white, is extremely low, considerably less
than 1%.

In what sense, if any, does this count as passing a good test of, or evidence for, h?
This raises a fundamental question of what Mayo means by these italicized
terms. I find the following two different claims about evidence (or “passing a
good test”) in her work.

(a) Sometimes she claims that “evidence indicates the correctness of hypoth-
esis H, when H passes a severe test” (p. 64). This seems to imply that evidence
that H provides a good reason to believe that H is true. But if this is what evidence
is supposed to do, then, as [ argued earlier in this chapter, it will do so only if the
probability of the hypothesis, on the putative evidence, is greater than <. Clearly
if (5) is the case, obtaining the experimental result ¢(T) from test Tis not evidence
that h, in the sense required.

(b) Sometimes she claims that evidence that H indicates that H is reliable,
which for her means that “what H says about certain experimental results will
often be close to the results actually produced—that H will or would often suc-
ceed in specified experimental applications” (p. 10).

There are hypotheses that are extremely reliable, with reference to certain
types of experimental results, yet very improbable, and indeed false. Consider
the following hypothesis about a certain coin:

H = The devil made this coin fair, that is, he made it so that it will land
heads approximately half the time.

If we consider experimental results pertaining to how the coin actually lands
when tossed, this hypothesis may be very reliable. It may accurately predict
what happens in the long run when the coin is tossed. Yet the hypothesis itself is
extremely improbable. So, Mayo may say, tossing the coin 1000 times and ob-
taining heads approximately half the time is evidence for the reliability of the
devil hypothesis H in experiments in which the coin is tossed and the side it lands
on is noted. It is not evidence for the truth of the devil hypothesis H.

Mayo seems to allow evidential claims of both types (a) and (b). Which one
someone is justified in making will depend on the hypothesis and the putative ev-
idence. I do not at all reject claims of type (b) since they simply amount to say-
ing that e is evidence (in a “good reason to believe” sense) not for the truth of H,
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but for the truth of the claim “H is experimentally reliable (in a specified range of
experiments).” I would reject the claim that this is the only, or the main, ques-
tion about evidence of concern to scientists and others. With respect to a hy-
pothesis such as the devil hypothesis H, one may seek evidence not only of its
“reliability” but of its truth as well. And, if p(H/e) is extremely low, and hence e
is not a good reason to believe H, then e is not evidence that His true, even if it is
evidence that H is “reliable” in experiments in which the coin is tossed and the
side it lands on is noted.2> Moreover, as I will argue in chapter 8, any plausible
attempt to define instrumental evidence—evidence that H is experimentally re-
liable—will need to appeal to the probability that H is true.

What about my example involving bags of balls? Here Mayo may claim that
the evidence obtained (40 of the 100 selected are white) is evidence that hy-
pothesis h (the bag selected contains 40% white) is “experimentally reliable”
(with respect to experiments that involve selecting balls from the bag). Or she
may claim that it is evidence for the truth of h. Or she may claim that the truth
of hin such a case amounts to its experimental reliability. Any of these alterna-
tives results in problems with her account, I believe. The evidence obtained (that
40 of the 100 are white) is not evidence that h is true or “experimentally reli-
able” (with respect to experiments involving selecting balls from the bag). If only
1 in 100,000 of the bags contains 40% white balls, that is, if p(h) = .00001,
then, as we said, p(h/e(T)) = .004. More generally, in the type of case envisaged,
the probability is extremely low that the hypothesis h is true or “experimentally
reliable,” no matter what the test results e(T) show. Yet on her view, the specific
test result is a good test of, and hence evidence for, hypothesis h. On the contrary,
I would claim, it is not.

11. Mayo Responses

Mayo considers an example that is analogous in certain respects to my bags-of-
balls example. Her response, tailored to my own example, is this.?® Selecting a
sample from the chosen bag, is, or at least can be, a severe test of the hypothesis
h, that 40% of the balls in the bag are white, the larger the sample the more se-
vere the test. If the bag contains such a large number of balls that counting
them all is infeasible, then sampling is surely the best means of detecting error.
So, in a suitable sample, if approximately 40% of the balls are white, then obvi-
ously we cannot infer that 60% of all the balls in the bag are white. Our sample

25. Complicating the picture is the fact that for the purposes of testing, Mayo wants to divide a
hypothesis such as the devil hypothesis H into two separate ones, each of which answers a
different question. H,: the devil made this coin; H,: the coin is fair. These hypotheses would
be tested in different ways. Perhaps, then, the way in which each would be tested (for ex-
ample, by tossing the coin in the case of the second hypothesis but not the first) would be
such that passing a severe test would indicate not only the “reliability” of the hypothesis
but its “correctness” as well. So it might be the case, on her view, that when testable hy-
potheses are suitably isolated, then passing a severe test indicates both “reliability” and
“correctness.”

26. Deborah G. Mayo, “Response to Howson and Laudan,” Philosophy of Science, 64 (1997),
323-333.
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does not indicate that, despite the fact that in the example the probability that
the bag has 60% white balls, given that 40% in the sample are white, is .996.%7

My response to this contains two points.

1. The fact that 40% of the balls in the sample are white (e(T)) does not “indi-
cate,” in the sense of “isevidence,” that 60% of the balls in the bag are white (k).
Although p(h’/e) is .996 (so that my high probability condition is satisfied), my
second (explanatory) condition of evidence (to be developed in chapter 7) is not
satisfied. Given the truth of h” and e, the probability is not high that there is an
explanatory connection between the two. For example, it is not highly probable
that in the sample 40% of the balls are white because in the bag approximately
60% are white.

2. Perhaps what tempts Mayo to conclude that finding 40% white balls in the
sample is evidence for the hypothesis that 40% in the bag are white is that there
is conflicting evidence in this case. The fact that we have a sample from the bag in
which 40% are white, considered by itself, is, or seems to be, evidence that 40% of
the balls in the bag are white. On the other hand, the fact that the bag has been
randomly chosen from a large set of bags only 1 in 100,000 of which contain
40% white balls, the remaining being 60% white, is, or seems to be, evidence
that 60% of the balls in the bag are white. Earlier we spoke of cases of this sort,
some of which, at least, can be understood in terms of ES-evidence. If one is in
an epistemic situation in which all one knows is that 40% of a suitable sample of
balls in this bag are white, but one has no idea that this bag was randomly se-
lected from a large set of bags only 1 in 100,000 of which contains 40% white
balls, then one may be justified in believing that 40% of all balls in the bag are
white. And if one is in a situation in which all one knows is that the bag has been
randomly selected from a large set of bags, .99999 of which contains 60% white
balls, then one may be justified in believing that 60% of the balls in the bag are
white.

With both pieces of information, what can we conclude? Consider just po-
tential evidence. Can we conclude that the fact that 40% in the sample are white
(e(T)) is evidence that the bag is 60% white (h’)? No, despite the fact that

27. InMayo’s example, which is derived from one of Colin Howson, a randomly chosen student
passes a college admissions test (¢). There are two hypotheses. H = the student is ready for
college (the student is not deficient); H = the student is not ready for college. Now we sup-
pose that college-ready students pass the test with probability 1 (p(e/H) = 1), while college-
deficient students pass only 5% of the time (p(e/H’) = .05). In the general population .999
are college-deficient, p(H') = .999, while p(e) = .051. Using Bayes' theorem, we calculate
that p(H'/e) = .98, that is, the probability that the randomly chosen student is college-
deficient, given that the student has passed the test, is .98, which, according to Mayo, How-
son would take to indicate that the student is college-deficient, given that he has passed the
test! Mayo responds that “scoring the passing grade e hardly shows a lack of readiness—
and on these grounds, the error statistician denies that e indicates H” (p. 328).

If by “indicates” Mayo means “is evidence that,” then Howson would reject Mayo's
claim. For Howson (who holds a positive relevance view of evidence), eis not evidence that
H’ (the student is college-deficient), but that H (the student is college-ready), since p(H'/e)
= .98 and p(H’) = .999, so p(H'/e) < p(H’). On the other hand, p(H/e) = 1—p(H’/e) = .02,
p(H) = .001, so that p(H/e) > p(H), from which it follows, according to Howson, that e is
evidence that (“confirms”) H, while ¢ “disconfirms” H’. So, contrary to Mayo, for Howson
“scoring the passing grade” indicates “readiness,” not a lack thereof.
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p(h’/e&b) is approximately .996 (where b indicates that only 1 in 100,000 of the
bags is 40% white). The reason is the one given in point 1 above. The explana-
tion condition is violated. Can we conclude that the fact that 40% in the sample
are white (e(T)) is evidence that 40% in the bag are white (h)? No, because, as we
saw, p(h/e(T)&b) is .004. So, on my view, in the light of background information,
e(T) is not evidence that h or that h’.

I turn now to a second possible Mayo response.?® The suggestion is to refor-
mulate the test rule to reflect the fact that the sample of balls selected occurred
in two stages: first, a bag was selected randomly from a set of bags with respect
to which the probability of selecting a 40% white bag is .00001; second, 100
balls were randomly selected from the chosen bag, of which 40 are white. In
view of this two-stage procedure, the test rule, given in section 9, should be re-
formulated as follows:

New test rule: In 100 selections of balls from a bag chosen at random from a
set of bags with respect to which the probability of selecting a 40% white bag
is .00001, if the observed proportion of white balls is less than .5, then the

resulting selection passes the test T” for hypothesis h as against hypothesis h’.

Hypothesis h is that the bag selected in this way contains 40% white balls; h’ is
that it contains 60% white balls. Now we run the new test T’ by selecting a bag
at random from the set in question and selecting 100 balls from the chosen bag.
We obtain the result e(T”) that 40 of the 100 are white.

Does the new test rule make a difference? Does it prevent the result ¢(T”) from
counting as good evidence for the hypothesis h, on Mayo’s view? No, it does not.
First, the result e(T’) passes the new test rule for h as opposed to I, since the ob-
served proportion of white balls (.4) is less than .5. Second, Mayo’s severity cri-
terion is satisfied, since the probability of obtaining the result ¢(T”), assuming
that h is false, is very low:

p(e(T")/—h) = p(e(T)/—h) = .0002.
Using Bayes’ theorem, and the given assumption that p(h) = .00001, we get
p(h/e(T’)) = .004, and p(h’/e(T’)) = .996.

In short, we get the same results using the new test rule as we do using the orig-
inal one. Moreover, the new test rule has the prior probability p(h) built into its
formulation. This is something Mayo seeks to avoid.

Here is a third possible Mayo response. She may reply in the same manner she
does when a hypothesis is constructed to fit the data, where the procedure for
constructing it would probably yield a good fit even if the hypothesis is false. She
calls this Gellerization. For example, let an experimental result consist in out-
comes of tossing a coin, where a heads outcome is a “success” and tails a “fail-
ure.” We are interested in hypotheses giving the probability of “success” (heads)
on each coin toss. Suppose the experimental result e of tossing the coin 4 times
is: s,ffs (s = success, f = failure). Let the Gellerized hypothesis G(e) be that the

28. This possibility was raised for me by Kent Staley.
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probability of success is 1 on trials 1 and 4, and O on trials 2 and 3.?° Then G(e)
maximally fits e: p(e/G(e)) = 1.

The test T Mayo imagines is this: observe the series of coin tossing outcomes
and “find a hypothesis G(e) that makes the result e maximally probable, and then
pass that hypothesis” (p. 202). Now, claims Mayo, in determining whether test T
is a severe test for some such G(e), you cannot just determine that p(e/G(e)) is
maximal. You also need to consider “as part of the testing procedure, the par-
ticular rule that is used to determine which hypothesis to test” (p. 202). The
following severity condition must be satisfied:

There is a very high probability that the test procedure T would not pass the
hypothesis it tests, given that the hypothesis is false. (p. 202)

With the test procedure T just noted for a Gellerized hypothesis G(e), the proba-
bility that the test procedure would not pass the hypothesis it tests, given that
the hypothesis is false, is not high but zero.

The question now is whether the hypothesis h in the previous section (“the
bag selected is 40% white”) is Gellerized in Mayo's sense, so that the procedure
for constructing it would probably yield a good fit with observed data even if
the hypothesis is false. It does not seem to be Gellerized. There is no procedure for
constructing h analogous to that for the Gellerized coin tossing hypothesis G(e).
We are simply told in advance that any bag in the set is either 40% or 60% white.
So we are considering each hypothesis in turn. Moreover, if the hypothesis h
were false, so that the bag selected was 60% white not 40%, then the probability
would not be high that the test T consisting of selecting 100 balls and noting col-
ors would yield the result it did, viz. 40 white (p(e(T)/—h) = .00002). So the
severity condition just noted is satisfied.

Let me briefly mention a final possible response by Mayo. It is to restrict her
theory of evidence to cases in which prior and posterior probabilities of hy-
potheses are unobtainable.>’ Mayo admits that there are cases in which prior
and posterior probabilities, in a frequency sense, can be assigned. She writes:

Except for such contexts, however, the prior probabilities of the hypotheses are
problematic. Given that logical probabilities will not do, the only thing left is
subjective probabilities. For many [including Mayo], these are unwelcome in
scientific inquiry. (p. 82)

On this proposal, Mayo's concept of evidence is applicable when and only when
hypothesis h is such that a frequency interpretation of p(h) and p(h/e) cannot
reasonably be applied, yet where frequency interpretations can be given to p(e/h)
and p(e/—h).

What concept of evidence, then, are we to use when (as in my bags-of-balls
example) a frequency interpretation can readily be assigned to p(h) and p(h/e)? If
we choose one according to which p(h/e) should be high, we obtain a very dif-
ferent concept of evidence from the one proposed by Mayo. In any case, why

29. See Mayo, p. 201, footnote 17.
30. Ithank Thomas Hood for this idea.
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should our concept of evidence be different when frequency probabilities can be
assigned to hypotheses? Why should e's passing a severe test with respect to h (in
Mayo's sense) count as evidence that h when p(h) and p(h/e) cannot be assigned
by frequency means but not when they can?

12. Is Belief Related to Probability?
Mark Kaplan’s View

I turn now to the final objection to the view that for e to be potential or veridical
evidence that h, and hence for e to provide a good reason to believe h, h’s proba-
bility on e must be greater than <. The objection derives from a theory that com-
pletely divorces belief from probability. I will examine an interesting version due
to Mark Kaplan.3!

On Kaplan's theory, there is no relationship between whether you believe
something and your degree of confidence in it. For Kaplan, your degree of con-
fidence is something that satisfies, or ought to satisfy, the probability rules. So on
his view you can believe something even though you have very little confidence
in it, that is, even though you assign very low probability to it. And you can fail
to believe it, even though you have a great deal of confidence in it, that is, even
though you assign very high probability to it. If this is right, then if you believe
h and do so for a good reason, that reason need not be one that you take to con-
fer a high probability on h. Kaplan is concerned here with subjective probability.
But one who wants to invoke objective probability might extend Kaplan's argu-
ment and say that a good reason to believe something, and therefore potential
and veridical evidence, need not confer a high degree of (objective) probability.

Let us consider Kaplan's reasons for the first part of this argument, namely,
the claim that there is no relationship between your believing something and
having some degree of confidence in it. On what he calls the “confidence thresh-
old view” (p. 94), you believe h if your degree of confidence in h exceeds some
threshold value k.32 The confidence threshold view, Kaplan claims, violates a
fundamental principle of rationality of beliefs, viz. “deductive cogency,” which
states that the set of hypotheses you believe includes the consequences of that
set but no contradictions. (Among the consequences of a set of propositions is
the conjunction of members of the set.) That this principle is violated can be
shown by appeal to the lottery paradox (discussed in chapter 4). Suppose there
is a fair lottery consisting of 1000 tickets, one of which will win. Suppose your
confidence level for belief is .9, so that you believe a proposition p if your confi-
dence in p exceeds .9. With respect to any particular ticket in the lottery your
confidence level that it will not win is, let us suppose, greater than .9. Accord-
ingly, you believe it won't win. Conjoining all these beliefs results in the belief
that no ticket will win. But you are extremely confident (>.9) that some ticket
will win. Therefore, your beliefs are contradictory.

31. Mark Kaplan, Decision Theory as Philosophy (Cambridge: Cambridge University Press,
1996).
32. Thisis a simplification of the version he considers.

A defender of the confidence-threshold view will not be persuaded, but will
reject “deductive cogency.” If you believe h, and you believe h,, it does not follow
that you believe the conjunction h,&h,, since the probability you assign to the
latter may be less than the threshold required for beliefs, even if the probabilities
you assign to h, and h, separately exceed this threshold.

Kaplan is aware of this response by confidence-threshold theorists, and he of-
fers a reply. It is that if you reject “deductive cogency” then you must reject re-
ductio ad absurdum arguments generally (p. 96). In a reductio argument, Kaplan
writes, “a critic derives a contradiction from the conjunction of a set of hy-
potheses which an investigator purports to believe,” thereby demonstrating a
defect in this set.

Is Kaplan right? Must a confidence-threshold theorist reject reductio argu-
ments? In the lottery paradox the confidence-threshold theorist claims to believe
each proposition in the set consisting of propositions of the form “ticket i will not
win.” But he does not believe the conjunction of propositions in this set. So we
have the following situation. The set of beliefs which the confidence-threshold
theorist believes is inconsistent: the beliefs can’t all be true. Does the confidence-
threshold theorist believe they are all true? Yes and No. He believes that each of
them is true, but he does not believe that they are all true together; he does not
believe that the conjunction of these beliefs is true, even just the conjunction of
beliefs of the form “ticket i will not win.” So even though the set of his beliefs
can't all be true, you cannot derive a contradiction of the form “p and —p” from
this set, because the conjunction of beliefs is not a member of the set of his be-
liefs. You cannot derive the proposition “no ticket will win, and some ticket will
win,” or even just the first conjunct, from his set of beliefs, unless, that is, you ac-
cept the principle of “deductive cogency,” which he does not.>3

This does not commit the confidence-threshold theorist to abandoning reduc-
tio arguments. In a reductio argument the critic takes the investigator to believe
not just each proposition in the set of premises but the conjunction of these
propositions as well. The critic then derives a contradiction of the form “p and
—p” from that conjunction. In the lottery situation the confidence-threshold
theorist does not believe the conjunction of propositions of the form “ticket i will
not win.”

Kaplan has a second reply for confidence-threshold theorists (p. 98). It is that
even if we do not require “deductive cogency,” it is a possible course of action.
That is, it is possible to believe in such a way that the set of hypotheses you be-
lieve includes the consequences of that set but no contradictions. But, says
Kaplan, this is not even possible on the confidence-threshold view. That view
necessarily leads to the lottery paradox and the situation in which the set of your
beliefs includes a contradiction. .

To this a confidence-threshold theorist will respond that if the confidence-
threshold view is correct, then Kaplan is just mistaken in his claim that “deduc-

33. Here is an analogy. Consider situations that I am willing to have be the case. These might
include my seeing a movie tonight and my not seeing a movie tonight. But it doesn’t follow
from this that I am willing to have it be the case that I see a movie tonight and thatI don’t
see a movie tonight. Although I am willing to have each of the two states of affairs obtain
that cannot obtain together, I am not willing to have both of them obtain together.
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tive cogency” is a possible course of action. It is impossible. If confidence beyond
a certain threshold entails belief, then necessarily in a lottery situation of the
sort in question one will believe each member of a set of propositions not all of
which can be true, which is a violation of “deductive cogency.” Kaplan must
argue independently that confidence beyond a certain threshold does not entail
belief.

This leads to Kaplan's own view about belief, to which I now turn.

13. Kaplan’s “Assertion View” of Belief

According to Kaplan,

You count as believing P just if, were your sole aim to assert the truth (as it per-
tains to P), and your only options were to assert that P, assert that —P, or make
neither assertion, you would prefer to assert that P. (p. 109)

By having the “sole aim to assert the truth” Kaplan makes it clear that he means
the truth and only the truth, so that avoiding error is part of this aim. “The
truth,” he writes

is just an error-free, comprehensive story of the world: for every hypothesis h,
it either entails h or entails —h, and it entails nothing false. (p. 111)

In pursuing the aim of truth,

the desire for comprehensiveness and the desire to avoid error are bound to
conflict. . . . We would expect that different individuals would differ as to how
much risk of error they were willing to tolerate in order to satisfy the desire for
comprehensiveness. . . . It is compatible with the Assertion View that you tol-
erate very great risk of error, in which case you might well believe hypotheses
in whose truth you have very little confidence. (p. 111)

So this view divorces belief from confidence.

An immediate objection is that this leads to a bizarre consequence. You can
believe something and be very confident that it is false. Kaplan admits that this
is a consequence of this view.3* His response is this. The reason it sounds bizarre
is that we are operating with the “ordinary notion of belief,” which “construes
belief as a state of confidence short of certainty” (p. 142). The problem, he says,
is that this ordinary notion of belief also “takes consistency of belief to be some-
thing that is at least possible, and perhaps even desirable.” But he claims to have
shown that “no coherent notion of belief can do both” (p. 142). So he is offering
the assertion concept of belief as an alternative to the ordinary concept.

Kaplan's new concept of belief will also lead to a bizarre consequence for ev-

34. He writes: “Suppose we ask someone whether hypothesis h is true. It is easy to understand
how she might reply ‘Yes, his true,’ or ‘No, h is not true,” or how she might be unwilling to
commit herself either to h's truth or to its falsehood. But it is hard to see what can be made
of the responses, ‘Yes, h is true, but I am extremely confident it is false,” and ‘T believe h is
true, but I'd give you 20 to 1 odds that I'm mistaken.’ Yet, not only does the Assertion View
countenance these apparently bizarre responses. . . , it deems them entirely reasonable
ones to make in the context of inquiry.” (p. 142)
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idence, if the latter is construed as something that provides a good reason, or a
justification, for believing.3> For, on Kaplan’s assertion concept of belief, it is pos-
sible that e is evidence that h, and hence that e provides a good reason (or justifi-
cation) to believe h, even if it offers no basis for any confidence in h, and indeed
even if it offers a basis for confidence that h is false. This, I think, departs consid-
erably from any ordinary notions of evidence.

The reason that Kaplan offers his assertion concept of belief is that the ordi-
nary one, which, he claims, is tied to confidence, is “incoherent,” since it violates
deductive cogency (p. 142). But, I suggest, this charge of “incoherence” does not
stick. Rejection of “deductive cogency” by confidence-threshold theorists does
not lead to believing contradictions of the form p and —p. It leads only to believing
each member of a set of beliefs not all of which can be true.

Indeed, an inconsistent set of beliefs is possible on Kaplan’s own “assertion
view.” Consider two propositions, P and Q. Suppose my sole aim is to assert the
truth as it pertains to each, and my only options (in each case) are to assert that
P(Q), assertthat —P (—Q), or make neither assertion. And suppose I prefer to as-
sert that P (Q). Then, on the assertion view, I believe P and I believe Q. But this
could happen even if P and Q form an inconsistent set.

Kaplan may reply that the lottery paradox shows that the confidence-thresh-
old view of belief necessarily leads to an inconsistent set of beliefs, whereas his
own assertion view does not entail that an inconsistent set of beliefs is necessary,
only that it is possible. Since both views allow for the possibility of such inconsis-
tency, and since Kaplan does not take this as a defect for his assertion view, I'm
not sure why the necessary consequence of certain inconsistent sets of belief is
particularly damaging for the confidence-threshold view (which Kaplan later
calls the ordinary view of belief).

14. Conclusions

In this chapter I have defended the following claims.

1. A high-probability condition on evidence enables us to avoid counterex-
amples to the positive relevance view.

2.1f e provides a good reason to believe h, then h’s objective epistemic proba-
bility on e must be greater than <. Moreover, if e is potential or veridical evidence
that h, then e must provide a good reason to believe h. It does not suffice for e to
provide just some reason. Conflicting studies may furnish some reason to believe
h and some reason to believe —h, but not a good reason to believe both. Taken
separately, they may provide ES-evidence for each hypothesis. But taken to-
gether, they cancel and do not provide potential or veridical evidence for both.

3. Neither the strong Bayesian view that there are no beliefs only degrees of
belief, nor the weaker one that beliefs are degrees of belief greater than some

35. Kaplan does not construe evidence in this way, but suggests a view according to which e, if
true, is evidence that h for you if you have more confidence in h given e than you do in h
without e, where you are not certain of the truth-values of ¢ or h (p. 48). Since confidence
for him is a probabilistic notion, Kaplan is suggesting a subjective positive relevance con-
cept of evidence.
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number, is incompatible with the idea that evidence provides a good reason to
believe a hypothesis, and hence that it confers a probability greater than 1

4. The view that evidence provides a good reason to believe, and hence fur-
nishes a probability greater than 3, is defended against three views. The first, the
likelihood view, completely divorces evidence that h from whether, or to what ex-
tent, one should believe h. So, in effect, does the second, Mayo's error-statistical
account, since even “experimental reliability” does not guarantee a good reason
to believe the hypothesis, or that its probability is greater than 3. The third, due
to Mark Kaplan, completely divorces belief from probability. I argue that the like-
lihood and error-statistical views fail to provide useful concepts of evidence,
notwithstanding arguments to the contrary by their defenders. AlsoIargue that
Kaplan is mistaken when he claims that only a divorce between belief and prob-
ability will save reductio arguments. Finally, I discuss unintuitive consequences
of Kaplan's own assertion view of belief, which allows you to believe something
to which you assign very low probability.
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THE EXPLANATORY CONNECTION

igh probability of h given e, by which is meant that h’s probability is greater

than that of its negation, that is, greater than 3, is necessary for e to be po-
tential (and hence veridical) evidence that h. That is what I have argued in ear-
lier chapters. But it is not sufficient. In this chapter I will formulate an additional
necessary condition that invokes the idea of a probable explanatory connection
between hypothesis and evidence. A concept of explanation that can be used to
understand this condition will then be explicated. (In what follows, unless oth-
erwise indicated, when I speak of evidence I mean potential evidence; as in
chapter 6, probability is being construed as objective epistemic probability.)

1. High Probability Is Not Sufficient for Evidence

To see why, recall the “irrelevant information counterexample” of chapter 4:

e: Michael Jordan eats Wheaties
b: Michael Jordan is a male basketball star
h: Michael Jordan will not become pregnant

The probability of h given b is close to 1, and this probability is unchanged if we
add information e to b. That is, p(h/e&b) is approximately 1. Yet it seems absurd to
claim that, given that Michael Jordan is a male basketball star, the fact that he eats
Wheaties is evidence that he will not become pregnant. In general, I have been
claiming, for any e, b, and h, if eis evidence that h, given b, then, given b, e provides
a good reason to believe h. The fact that Michael Jordan is male provides a good
reason to believe he will not become pregnant. But given that he is a male basket-
ball star, the fact that Michael Jordan eats Wheaties fails to provide such a reason.

More generally, suppose that the background information b itself is, or con-
tains, evidence that h. (In our example, b contains the information that Michael
Jordan is male.) And suppose we append to the background information b some
item of information e that is, evidentially speaking, irrelevant for the hypothesis
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